増富温泉地内自然湧泉の²²²Rn濃度の経時的変化について

望月映希 小林浩 早川拓哉

Temporal Trends in 222Rn Concentration of Some Natural Springs at Masutomi Onsen Area

Eiki MOCHIZUKI, Hiroshi KOBAYASHI and Takuya HAYAKAWA

キーワード:ラドン222、増富温泉、山梨県

山梨県北部に位置する増富温泉は古くから温泉保養地として知られ、県内外から多くの利用者が訪れている。

温泉水中の²²²Rn濃度日本最高値が増富温泉で観測された¹¹ことが示す通り、増富温泉水に含まれる²²²Rnの含有量は全国屈指であり、少なくとも大正3年から多くの研究者による調査報告^{2~11}が行われてきた。

これらの報告は、温泉成分の含有量等について記しているが、この温泉に特徴的に含まれる²²²Rnについてはその濃度が報告により大きく異なる地点もある。また、それらの報告は散発的かつ不定期なものであり、年間変動などを調査した報告はない。

さらに、²²²Rnの起源や湧出機構の推定^{5,8)}が行われているが、これらの報告からすでに50年以上が経過し、近年のデータによる検証、確認が必要である。

そこで本調査では、定点において²²²Rnを中心にモニタ リングを行い季節変動を明らかにし、その結果から推定 されている²²²Rnの湧出機構の検証を行うこととした。

調査方法

調査地点及び地名を図1及び図2に示した。図1のA,B及びで(いずれも県有林内未利用源泉)を調査地点とした。なお調査期間中にD地点(図2)で湧水を認めたため、Dにおいても湧出停止まで調査を行った。また農業用水路(以下「水路」という)の水質についても調査した。

調査項目及び分析法は次のとおり。

泉温:標準温度計。湧水量:定量容器による測定。pH: ガラス電極法。電気伝導率:交流二電極法。 222 Rn:ゲルマニウム半導体検出器による温泉水中ラドン濃度測定方法。 Na^+ 、 K^+ 、 Ca^{2+} 、 Mg^{2+} 、 $C1^-$ 及び $S0_4^{2-}$:イオンクロマトグラフ法。 HCO_3^- :分離滴定法。

測定頻度はおよそ14日に一度、測定期間は平成28年4 地図出典

山梨県地図:井上恵介「白地図専門店」http://www.freemap.jp/ 拡大地図:国土地理院電子国土 http://maps.gsi.go.jp/ いずれも一部編集

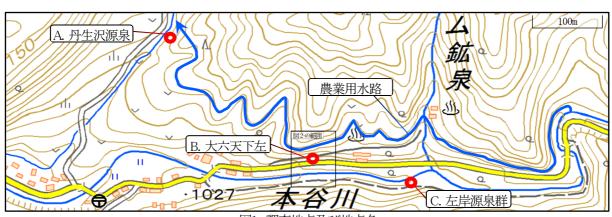


図1 調査地点及び地点名

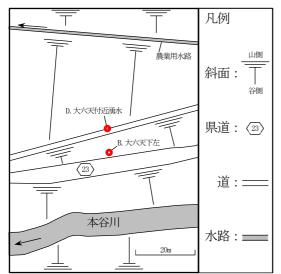


図2 調査地点及び地点名

月12日から平成29年3月27日とした。

なお、これらの項目に国土交通省水文水質データベー ス増富観測所の降水量のデータを加えて解析を行った。

結果と考察

各地点の分析結果を表1、2、3及び4に示した。

またA、B及びC地点の主要な項目の年間変動、降水量 及び農業用水路使用期間のグラフを図3に示した。なお、 農業用水路は使用開始前には乾燥していたが使用終了後 は水位が激減したもののわずかに流れが見られた。

A、B及びCいずれの源泉においても、降水や表流水の 影響を受けていないと思われる時点における²²²Rnを除く 成分の濃度とその比は近似していた。このことから、こ れらの源泉のおおもとは同一のものと考えられた。

1 丹生沢源泉(A)

湧水量、²²²Rnを除く成分の濃度において、9/28に降雨 の影響で若干水量が増え、濃度が低下しているものの、 ²²²Rnを除く全項目が年間を通じてほぼ一定であり、水路 水の影響を受けていないことが分かった。

²²²Rn濃度に着目すると、初め漸増し、8月末に急激に減 少し10月から再び増加に転じている。

減少の時期から見て水路使用終了と因果関係がある ようにも見えるが、前述のとおり²²²Rn以外の項目から見 てこの源泉が水路の影響を受けていないこと、水路使用 開始時期に²²²Rn濃度の変動がないことから、水路の使用 状況が²²²Rn濃度に影響を与えているとは考え難い。

泉温の変化による溶解度の変化が原因であることも 疑ったが、4/12から8/16まで泉温も²²²Rn濃度も上昇して いた。また、8/16から10/25まで泉温は横這いから僅かに 低下し、²²²Rn濃度は急激に減少していた。11/8以降は泉 温は低下し、222Rn濃度は増加していた。

泉温と²²²Rn濃度の変動には一貫した相関がなく、泉温の

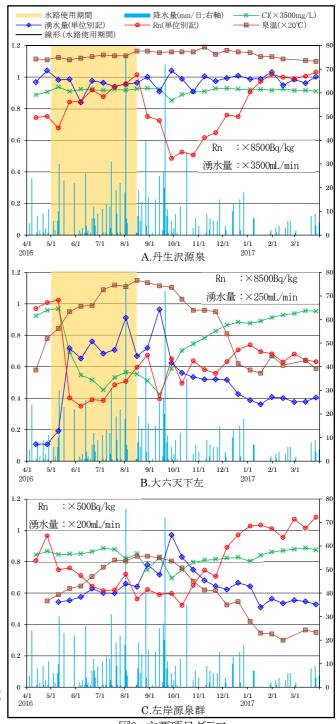


図3 主要項目グラフ

みの影響により²²²Rn濃度が変動しているとは考え難

²²²Rnとその他の成分の濃度の変動には大きな差異が見 られるが、このことは互いの起源が異なる可能性を示唆 している。

丹生沢源泉の²²²Rn濃度は調査期間内に大きな変動を見 せたが、毎年同様のパターンを示すか否か、その変動の 要因について、いずれも不明であり今後も継続的な調査 を要する。

2 大六天下左(B)

大六天下左は、県道23号脇の岩の亀裂から湧いている。その亀裂からは微細なものを除いて3箇所から湧出している。その右端は現在旅館で取水し営業に供している。中央は湧水量が少なく、冬季には湧出しないため採水が困難である。そのため左端の源泉を調査地点とした。

水路使用開始後、5月頃に湧水量が急激に増加し、各成分の濃度が低下した。水路使用終了後、9月頃から再び湧水量は減少し、各成分の濃度が上昇した。このことから、この源泉は水路使用の影響を受けることが分かった。

²²²Rn濃度と他の成分の濃度の変動を比較すると、²²²Rnの方が5月の濃度低下が著しい、²²²Rn濃度の上昇が6月頃から認められた、1/4以降²²²Rn濃度は低下しているがその他の成分は上昇している等、この源泉においても²²²Rnとその他の成分の濃度変動に差異が見られた。

²²²RnとCl⁻の濃度と湧水量を積算した成分湧出量を図4に示した。²²²Rn湧出量に着目すると、農業用水路を使用し始めた頃から増加しており、水路使用終了後に湧水量と共に減少していた。また、主要成分であるCl⁻の湧出量においても水路使用終了後の減少は不明瞭であるものの同様の傾向が見られた。

温泉の流路に用水路の水が単純に浸入することで湧水量が増加した場合、時間当たりの各成分湧出量には大きな変化がない、または出口圧力上昇により地下からの温泉湧水量が低下し、時間当たりの各成分湧出量は減少すると考えられたが実際には前述のとおりの変化が認められた。このことは例えば次のような機構を仮定すれば説明できる。

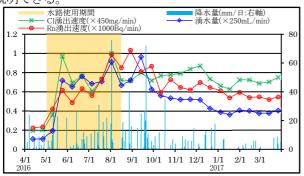


図4 B.大六天下左、成分毎湧出量グラフ

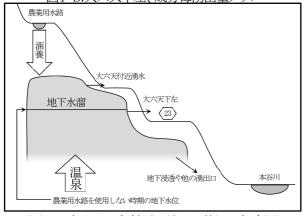


図5 B.大六天下左付近の地下の状況の仮定図

図5のように地表近くに地下水溜があり、この地下水溜には複数の出口がある。

水路を使用しない時期は地下深くから来る温泉水と降水のみに涵養されるため地下水位が低く、各温泉成分の濃度も高い。

水路の使用が始まると、素掘りの水路から浸透した水が地下水溜を涵養し、地下水位が上がり、温泉が希釈される。水位が上がった分だけ大六天下左にかかる圧力及び湧水量が増大し、結果として各成分の湧出量は増加する

3 大六天付近湧水(D)

大六天付近湧水は、大六天下左の斜面直上に位置する。この地点付近に²²²Rn濃度40,000Bq/kgを超える大六天の泉とという源泉があった⁵⁾が今では枯渇している¹⁰⁾。

大六天付近湧水は冬季には湧出が見られず、8/16に発見され、10/11を最後に枯渇した。8/16以前にも湧出していた可能性はある。この源泉の主要項目及び成分毎湧出量グラフを図6に示した。

図5の仮定を採れば大六天付近湧水の²²²Rn以外の濃度の変動についても説明することが出来る。

地下水溜の水位が上昇し大六天付近湧水の高さを超 えた際に湧出が始まり、水路の使用が終わり、水位が下 がると湧出が止まる。

水路水が地下水溜を涵養する際、水路に近い地下水溜 上部では各成分の濃度が希薄で、下部に行くにつれ濃く なる濃度勾配が生じるため、同じ地下水溜から湧出して いるにもかかわらず、大六天下左と比較して各成分の濃 度が希薄である。

水路からの涵養量が減少し、地下水面が湧出口に近くなると、水路水の混入比率が高まり各成分は薄く、泉温は低くなる。また圧力の変動に応じ湧水量も減少する。

ただし、この仮定だけでは湧水量の減少と同時に²²²Rn 濃度が上昇すること、大六天下左と大六天付近湧水の ²²²Rn濃度比がその他の物質の濃度比と明らかに異なるこ とについて説明できない。このことは前述の仮定に黒田 氏の説^{5,8)}を加えることで説明可能となる。

黒田氏の説によれば、温泉にわずかに含まれる²²⁶Raが 地表付近で鉄と共に沈殿し堆積物中に²²⁶Raが濃縮され、

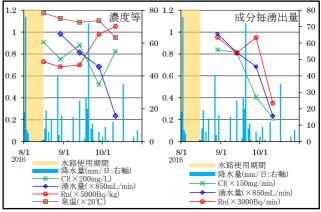


図6 D.大六天付近湧水、濃度等・成分毎湧出量グラフ

それが増富温泉の²²²Rn供給源となっている。

かつて存在した大六天の泉で生じた堆積物の一部が 地下水溜から大六天付近湧水湧出口までの流路内に²²²Rn 供給源として存在する。また大六天付近湧水の湧出口は 土壌であるため、流路を通った水の一部は土壌に浸透し、 その余剰分が湧水として地表に現れる。

全流量が低下した場合²²²Rn供給源は常に一定量の²²²Rn を供給し続けるため、²²²Rnの濃度が反比例して上昇する。また、土壌に浸透する水量を一定とすれば、全流量の内、地表に湧出する水の比率は小さくなり、²²²Rnの湧出量は減少する。

4 左岸源泉群上東(C)

左岸源泉群上東は、傾斜50度程度の斜面の高さ5m幅 10m程度の範囲内に少なくとも8箇所から湧出する源泉の 集団のうち最上位に二つ並んだ源泉の東側に位置する。

8/29、9/28において降水の影響と思われる湧水量の増加とNa⁺、Cl⁻等の濃度の若干の低下が見られるが、それを除き、これらの項目は概ね一定の水準を保っている。

大六天下左と同様に湧出量に注目すると、図7のとおりCl⁻の湧出量が湧水量と共に増減しており、左岸源泉群上東においても地下水溜から湧出していると考えることが出来る。²²²Rnの湧出量ではそのような傾向は見られなかった。

²²²Rn濃度に着目すると5/10から11/21にかけて低く、それ以降に高濃度となっている。泉温は反対に5/10から11/21にかけて高く、それ以降に低くなっており、両者には負の相関が見られる(図8)。湧水量も泉温同様の傾向が見られ²²²Rnとの相関が有るように見えるが、湧水量が大きく増加する7/19から9/23にかけて²²²Rn濃度は横這いであるなどの点から、見かけ上の相関であるかあるいは泉温と²²²Rn濃度の相関より弱い相関であると思われた。

²²²Rn濃度と泉温の間に負の相関が見られたのは、気体の溶解度が温度に依存することによるものと思われる。

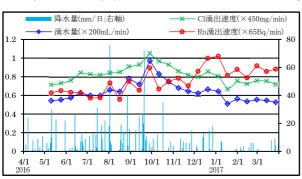


図7 C.左岸源泉群上東、成分毎湧出量グラフ

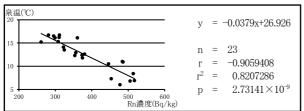


図8 C.左岸源泉群上東²²²Rn濃度と泉温の相関図

まとめ

今回得られた各成分の年間変動を解析したところ、大 六天下左付近、左岸源泉群において地下水溜から複数の 源泉へ温泉が供給されていることが新たに推定された。

また、大六天下付近湧水の²²²Rn濃度の変動を説明するためには、湧出口付近に²²²Rn供給源があるとする必要があった。いずれの源泉においても²²²Rn濃度とその他の成分の濃度の変動に差異が見られ、²²²Rnと他の成分は起源が異なることが示唆された。これらのことは、黒田氏の唱える「温泉水中の²²⁶Raが地表付近で沈殿することにより濃縮される。その沈殿物が²²²Rn源である」とする説を間接的に支持するものである。

今後の課題として、丹生沢源泉において²²²Rn 濃度の大幅な変動が認められたが、現状ではその要因を説明することが出来ないため、さらに調査を継続し、その要因を明らかにする必要がある。また、新たに推定された地下水溜の存在を検証していく必要がある。

参考文献

- 1) 山本 政儀,富田 純平:放射能と温泉,温泉科 学,**64**,388-401 (2015)
- 割 秋濤: 甲州增富「ラヂューム」鑛泉ノ細菌ニ就テ、 細菌學雑誌,229,830-837 (1914)
- 3) 衛生試驗所:衛生試験所彙報,衛生試験所彙報,**34**,119-121 (1929)
- 4) 中井 敏夫:本邦鑛泉の微量成分(其二),日本化學 會誌,**58**,638-643(1937)
- 5) Kazuo KURODA: Strongly Radioactive Springs Discovered in Masutomi., Bulletin of the Chemical Society of Japan, **19**, 33-83 (1944)
- 6) 木村健二郎ら:強放射能泉中におけるラドンとその 壊變生成物との平衡關係,日本化學雑誌,69,1-3,34 (1948)
- 7) 伏見 弘, 秋山 悌四郎: 増富温泉地域ならびに同地に おける試鑿井の地球化学的研究, 日本化学雑 誌, **76**, 6, 620-624 (1955)
- 8) 中央温泉研究所: 山梨県温泉調査資料集, (1961) (山 梨県)
- 9) 御船 政明ら:強放射能泉に生息する温泉植物 (第2報) 山梨県増富温泉の藻類,温泉科学,**16**,129-135 (1966)
- 10) 中央温泉研究所:山梨県温泉調査資料集,(1972)(山 梨県)
- 11) 堀内 公子,村上 悠紀雄:鉱泉中のラジウム、ラドン 同時定量に関する研究その1,温泉科学,**29**,68-75 (1978)

			į		_ 1	_ 1		_ 1	- 1	_ 1			_ 1					_ 1	_					_ 1	_	_ 1		_
	HCO_3^-	mg/L	久運	1290	1250	1280	1300	1320	1360	1350	1350	1340	1320	1320	1240	1310	1310	1330	1320	1320	1350	1360	1340	1350	1350	1320	1350	1360
	50_4^{2-}	mg/L	649	662	678	657	662	665	661	672	663	699	699	667	615	650	629	654	699	658	899	672	658	655	099	655	655	652
	<u>-</u>	mg/L	3110	3180	3280	3180	3230	3220	3210	3230	3220	3240	3260	3240	2980	3120	3180	3180	3250	3260	3240	3230	3230	3210	3240	3210	3210	3190
	${\sf Mg}^{2+}$	mg/L	久測	24. 2	24. 4	24. 4	26. 6	21.4	23.8	28. 2	25. 7	22.3	25.3	25.8	20.9	23.3	22.0	24. 2	23.1	23. 2	21.9	23.0	21.3	20.5	21.3	21.0	20.8	21.6
	Ca ²⁺	mg/L	久測	288	282	245	233	274	247	280	244	254	251	279	250	230	271	275	261	251	242	259	243	235	239	246	241	231
	ţ	mg/L	310	329	338	321	339	322	319	322	320	333	318	319	289	318	305	330	318	334	330	329	307	301	314	313	313	300
	Na ₊	mg/L	2450	2510	2570	2500	2540	2550	2520	2570	2510	2580	2570	2550	2350	2480	2530	2540	2560	2540	2520	2560	2500	2460	2490	2450	2450	2440
	²²² Rn	Ba/kg	6330	6390	5760	7160	7190	7820	7450	7990	8150	8640	6380	6170	4130	4470	4310	5250	5510	6460	6380	7710	8270	8640	8200	8350	8550	8780
	泉温	ွ	22.3	22. 2	22. 5	22. 2	22. 4	22. 6	22.8	22. 7	22. 7	23.3	23.3	23.1	23. 2	23. 2	23. 2	23.8	22.9	23. 4	23. 2	23.1	22. 6	22. 6	22.3	久運	22. 1	22.0
	巡	ွ	5.6	16. 7	16.8	20.0	15. 2	15.8	22. 7	22. 9	20. 4	22. 1	21.5			13.0	8.5		13.0	7.2	6.3	5.2	-0.7	-2.0	6.0	火	5.0	0.9
	湧水量	mL/min	3390	3650	3440	3450	2940	3420	3380	3290	3350	3370	3500	3180	3650	3460	3180	3520	3410	3480	3530	3460	3460	3610	3320	3450	3370	3510
Ŧ	高海承	S/m	1.21	1. 22	1.21	1. 25	1. 20	1. 19	1. 18	1. 19	1.17	1. 18	1.16	1.15	1.07	1. 12	1.09	1.12	1.11	1.12	1.14	1. 10	1. 10	1.09	1. 10	1. 10	1.13	1. 10
	Ha	-	6. 43	6.30	6.36	6.30	6.37	6.39	6. 17	6.54	6. 47	6.55	6. 29	6.63	6.32	6. 29	6.39	6. 43	6. 40	6.35	6. 47	6.34	6.32	6.04	6.35	6. 47	6. 28	6. 75
★ □	調		4/12	4/26	5/10	5/24	20/9	6/21	7/05	7/19	8/02	8/16	8/29	9/13	9/28	10/11	10/25	11/08	11/22	12/06	12/20	1/04	1/17	1/31	2/14	2/28	3/14	3/27
<u> </u>					!	į		į				!	į	中	₩;	Ϋ́ Е	点具	<u>.</u>	į		!		!	į	į	į		

- 35 -

	HCO ₃ -	mg/L	久河	1240	1200	895	703	740	743	773	869	786	803	564	851	981	1010	1070	1110	1180	1210	1210	1230	1350	1290	1280	1340	1330
-	50_4^{2-}	mg/L	199	687	687	514	414	398	355	410	426	422	398	336	447	521	547	571	297	623	639	630	647	657	899	672	089	829
-	<u>-</u>	mg/L	3240	3360	3400	2430	1920	1810	1590	1870	1980	1940	1790	1490	2060	2460	2610	2740	2900	3040	3100	3070	3120	3200	3250	3290	3350	3340
-	${\sf Mg}^{2+}$	mg/L	久運	22. 8	23. 2	14.8	8.83	8. 56	9.90	9.90	7.14	10.3	8.90	8.54	13.4	12.5	13.8	14.8	16.0	15.6	久測	17.7	18.4	18.8	19. 2	21.2	21.2	23.0
-	Ca ²⁺	mg/L	久運	247	230	153	115	78. 6	102	88. 6	102	107	92.0	82. 4	117	136	147	169	179	192	久測	211	237	234	244	247	250	250
-	ţ	mg/L	338	352	329	259	208	196	176	213	217	211	203	166	235	272	279	288	313	316	322	321	332	336	335	343	348	357
-	Na	mg/L	2420	2480	2520	1850	1460	1410	1240	1470	1570	1490	1400	1150	1610	1890	1970	2070	2200	2280	2320	2280	2380	2420	2450	2470	2520	2510
-	²²² Rn	Ba/kg	8250	8570	8700	3420	2970	3320	3280	4130	4320	2080	5730	3360	5530	4210	5430	4950	4750	5380	6020	6280	5920	2800	5360	5790	5470	5370
-	彩温	ပ	11.6	15.6	16.9	19.0	19. 7	19.8	21.8	22. 4	22. 2	23.0	22. 7	22. 3	22. 1	20. 6	19. 2	19. 2	19.0	16.2	12. 4	11.6	11. 2	13.4	12. 2	久 三	12.8	11.8
-	则	ပ	10. 6	17. 5		24. 5	17. 5	18.0	28. 3	26. 3	21. 2	25. 0	25. 0	19. 0	22. 1	15. 0	10. 5		14. 1	8.0	7.5	5. 7	1. 4	2.1	2.1	久	6. 4	2.0
-	湧水量	mL/min	27.1	27.3	48.2	180	163	190	171	177	228	167	180	241	156	140	134	130	130	129	107	97. 1	90.0	102	100	94. 2	94. 7	101
-	電気 伝導率	S/m	1. 22	1. 25	1. 26	0.983	0. 753	0. 727	0. 675	092 '0	0.645	0. 743	0. 729	0. 556	0.770	0.882	0.899	0.965	1.00	1.03	1.07	1. 05	1. 07	1.06	1. 10	1.09	1. 15	1. 10
-	На		6. 29	6.52	6.35	6. 19	6. 21	6. 22	6.09	6. 14	6. 40	6. 40	6. 10	6. 40	6. 12	6. 23	6. 22	6. 22	6. 19	6. 21	6. 29	6. 28	6. 25	6. 29	6. 28	6. 23	6. 27	6. 18
分析結果	調		4/12	4/26	5/10	5/24	20/9	6/21	7/05	7/19	8/02	8/16	8/29	9/13	9/28	10/11	10/25	11/08	11/22	12/06	12/20	1/04	1/17	1/31	2/14	2/28	3/14	3/27
素2			ļ		!	!		!		!	!	!	!	К	K I	ΚĽ	- H		!	ļ	!				!			

- 36 -

1	電気	说 司	一	Ü	222 D	+0	ż	4,00	M ~2+	-	-5 00	- 001
伝導率	湯水重 川 / min		順。	影。	Ra /kg	Na.	. V DM	ga Za	Mg ⁻		3U4² mα /1	HCC3
3	女運		9.6	2河	403	2310	335	久測	久週	2960	745	
1.14 欠測	欠測		18. 2	11.0	484	2370	330	208	17.9	3040	762	1170
1. 16 109	109			11.8	374	2310	326	210	16.5	2960	745	1150
1.17 111	111		21.0	12.6	380	2320	331	214	16.8	2980	753	1160
1.14 115	115		15.0	12.9	356	2320	322	205	18.3	2980	746	1210
1. 14 126	126		19. 1	14.1	322	2340	328	217	16.5	3030	764	1210
1.14 120	120		21.8	15.3	308	2410	343	230	18.7	3100	779	1270
1.14 120	120			16.2	310	2390	334	223	16. 2	3080	776	1240
1. 07 132	132	ļ.	. !	16.1	361	2230	314	196	17.7	2870	720	1200
1. 09 128	128		21.9	16.7	281	2320	323	239	20.6	2990	753	1210
0. 958 156	156	:	21.0	16.7	311	2050	292	179	16.6	2620	662	1060
1. 03 144	144		~ .	16.5	296	2260	316	193	17.0	2910	729	1150
0.883 194	194		18. 1	16.1	299	1900	268	178	11.8	2440	614	957
0. 934 166	166		15. 2	15.2	261	2030	283	191	18.3	2620	653	1060
0. 957 150	150		9.2	13.5	325	2170	297	187	15.0	2790	697	1130
0. 992 136	136			12. 4	373	2210	310	171	16.8	2840	713	1160
1.00 129	129		12. 1	12.3	353	2230	314	216	15. 5	2860	723	1190
1. 02 1.25	125		5.9	10.5	446	2250	314	181	14.0	2890	720	1220
1. 03 133	133		7.8	10.9	486	2250	310	187	15.8	2900	732	1220
1. 00 129	129		5.2	8.4	514	2200	317	190	16.3	2820	718	1210
1. 03 102	102	 i		6.9	517	2310	333	204	16. 6	2950	742	1230
1. 03 113	113	i	1.0	6.8	505	2350	322	217	18.5	3020	753	1260
1.06 107	107		1-	0.9	477	2360	327	222	19.3	3050	762	1250
1.05	111		久測	久河	536	2380	339	221	19.8	3080	292	1270
1. 08 109	109	- i	6.0	7.3	507	2410	338	225	16.8	3110	774	1320
1.05	106			7.0	542	2370	329	215	18.2	3070	797	1320

表3 分析結果

8 4 9 3 - 2 3 65. (58. (69. (78.) 85. 39. 4 47. 4 36. 4 42. 1 50^{2-} 182 150 177 104 165 능 ${
m Mg}^{2+}$ 4 8 21. Ca^{2^+} <u>∞</u> ∞ 5. 24.3 21.0 22.4 16.0 20. ╧ 170 69 69 16 157 ₽ 3650 3420 3500 4900 5260 ²²²Rn 23. 21. 22. 19. 泉温 25. 0 25. 0 19. 0 22. 1 15. 0 837 692 582 200 0. 0882 0. 0972 0. 0670 0.0936 5. 73 5. 63 6. 01 5. 69 5. 66 풘 8/16 8/29 9/13 9/28 10/11 調査日 大六天付近湧水

16.3	15.5	17.1	16.3	17.9	13.4	14.6
9, 65	9.37	9.87	8.80	9. 70	10.3	8 94
4 40	4. 26	4. 62	3. 66	4. 59	5. 19	3 01
0.7	9 .0	0.7	0.7	0.7	0.7	8
3, 58	3. 63	3. 59	3. 16	3. 78	3.99	3 97
1 06	1.04	1.01	1.04	1.17	1. 26	104
6.92	6. 80	7. 29	6. 40	7. 41	8. 03	5 83
85	8>	8>	8>	89	8>	8
11.6	11.6	11. 2	12. 2	15. 6	18. 5	16.6
23.0	25.8	18.0	18.1	26.9	26.0	21 6
I	1				I	
99900 0 06 9	99900 0 666.9	0.00699	0.00632	0.00706	6.89 0.00766	7 32 0 00619
06.9	6.99	6.98	6.85	69 '9	6.89	7.32
5/10	5/24	20/9	6/21	7/05	7/19	8/02
		= #	任子	←恕	i	