[成果情報名] 鉢用土の改良による鉢花品質の向上

[要約] スズランエリカでは、鉢用土に大粒の吸水ポリマー1 g/Lを配合することで、水切れによる枯死率が低下し、ルクリアでは落花および葉の斑点症状が減少する。また、ビオラでは、鉢用土に10 g/Lのケイ酸カルシウム資材を配合することで、花蕾数の増加が見られ、ルクリアでは花蕾数増加および斑点症状の発生が減少する。

[担当] 総農セ・高冷地振興セ・岳麓試験地 渡辺淳

「分類] 技術・普及

[背景・ねらい]

県内では地域ごとに特色ある鉢花生産が行われブランド花きとして市場評価も高い。しかし、鉢花は花そのものの評価に加え、管理のしやすさも重要で、特に水切れによる品質低下はブランドイメージを低下させる。そこで、個々の特産花きの選択的な品質改善目標を解決するために改良した鉢用土を使用する事で、鉢花品質の向上を図ると共に付加価値を高めることで消費者への信頼向上を目指す。

[成果の内容・特徴]

吸水ポリマー剤配合用土

- 1. 吸収ポリマーを鉢用土に配合することで、有効水分保持量が増加し、保水性が向上する。最適な混合割合は 1 g/L で 5 g/L では有効水分保持量は増加せず、気相率・固相率が低下する(表 1、図 1)。
- 2. スズランエリカで吸水ポリマーを1g/L配合することで、無灌水期間10日後において水切れ被害程度は低く、枯死は見られなかった(図2)。
- 3. ルクリアで吸水ポリマーを 1 g / L配合することで、落花割合および葉の斑点症状発生が低下する (表 2)。

ケイ酸カルシウム資材配合用土

- 1. ビオラの鉢用土に 10 g/Lのケイ酸カルシウム資材を配合することで、花蕾数が増加する(図 3)。
- 2. ルクリアの鉢用土に10g/Lのケイ酸カルシウム資材を配合することで花蕾数の増加および葉の斑点症状発生が低下する(表 3)。

[成果の活用上の留意点]

- 1. スズランエリカ、ルクリアは岳麓試験地ガラス温室内(最低温度 10℃設定)ビオラは 鉢上げ後、露地条件での試験を行った。
- 2. 吸水ポリマー材は、高分子吸水剤「ミズハノメ」を使用した。 1 g 約 1.4 円である。 ケイ酸カルシウム資材はクリオン株式会社製資材を使用した。ビオラでは粒径 0.8 ~ 4.0 mmの小粒を、ルクリアで、粒径 $5.0 \sim 10.0 mm$ の大粒を使用した(多孔質、比重は約 $0.7 \sim 0.8$)。

[期待される効果]

1. 県内で生産される鉢花に付加価値を付け品質向上を図ることで、山梨県花きのブランド力向上を図る。

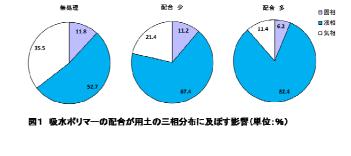

[具体的データ]

表1 吸水ポリマーの配合が用土の比重、保水性、透水性に及ぼす影響

KI MANAY CORETO MILES DECEMBER MANER DESCRIPTION OF THE PROPERTY OF THE PROPER							
		用土の比重	仮比重 (乾土)	最大容水量	有効水分 保持量	飽和 透水係数	
		(g/cm^3)	(g/cm^3)	(cc/L)	(cc/L)	(cm/s)	
無処	理	0.78	0.26	660	99	>0.1	
配合	少	0.92	0.25	725	141	0.10	
配合	多	0.97	0.15	876	99	0.02	

※ポリマー配合少 1g/版 配合多 5g/版

※吸水ポリマー ミズハノメ3005KC



図2 吸水ポリマー配合用土によるスズランエリカの水持ち

※岳麓試験地ガラス温室内最低温度10℃設定

※被害程度:O健全 1:一部で葉落葉 2:25%以内で葉の落葉 3:50%以内で 葉の枯死 4:ほぼ全体で落葉

※ポリマー大粒「ミズハノメ3005KL」小粒「ミズハノメ3005KC」

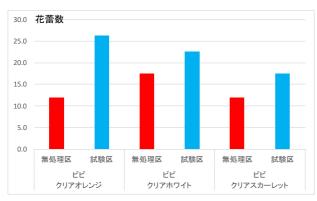


図3 ケイ酸カルシウム混合用土がビオラの品質に与える影響

表2 吸水ポリマー配合用土がルクリアの品質に与える影響

	乾燥処	理	落花割合	
ポリマー 処理	しおれまで	落花数	冷化刮口	葉の障害度
	の期間(日)	個/株	%	
あり	9.5	4.8	9.0	1.3
	8.1	7.6	14.1	2.2

※高分子吸水ポリマーの処理量1g/鉢

※落花程度 落花数/花蕾数×100

※用土 5種混合用土

表3 ケイ酸カルシウム資材混合用土がルクリアの品質の与える影響

試験区	地上高	花蕾数	斑点症状 発生程度	 葉色
	cm	個/釒		SPAD値
処理区	35.8	97.0	0.5	47.9
無処理	49.4	79.5	1.1	46.6

※用土は五種混合用土

※マンガン過剰による斑点症状(平成27年度成果発表)

※障害程度は症状の軽い方から0~4の5段階で評価

[その他]

研究課題名:山梨ブランド花きの用土開発による品質向上技術の確立

予算区分:県単

研究期間: 2017~2019 年度

研究担当者:渡辺 淳、馬場久美子、志村貴大、岡田淳子